Teknologi Informasi Efektif Mendeteksi Cyberbullying

Indonesia

  • Ajeng Ayu Kustianti Jurusan Keperawatan, Sekolah Tinggi Ilmu Kesehatan Mitra Keluarga
  • Renta Sianturi Jurusan Keperawatan, Sekolah Tinggi Ilmu Kesehatan Mitra Keluarga
  • Ameliya Sarwani member
  • Anggita Putri Siswadi Jurusan Keperawatan, Sekolah Tinggi Ilmu Kesehatan Mitra Keluarga
  • Delia Nurmalita Jurusan Keperawatan, Sekolah Tinggi Ilmu Kesehatan Mitra Keluarga
  • Elisa Puspitasari Jurusan Keperawatan, Sekolah Tinggi Ilmu Kesehatan Mitra Keluarga
Keywords: Cyberbullying, Social media, Mental Health Disorders

Abstract

Social media users are at risk for mental health disorders. Mental health problems can occur with cyberbullying. Cyberbullying that occurs on social media is in the form of rude comments, threats, insults, slander and even harassment given by netizens. Cyberbullying can shake a person's mental health condition and even have an impact on suicide. Cyberbullying will be very detrimental both mentally and productively. Cyberbullying must be detected early to prevent adverse effects on social media users. With advances in technology, it can be used to detect cyberbullying that occurs on social media. This article uses a literature review method approach, namely narrative literature review of 10 articles on the use of technology for cyberbullying detection in the period 2011 - 2021 with the aim of finding out cyberbullying comments on someone's account/post. Therefore, cyberbullying detection tries to collect global datasets on social media (Facebook, Instagram, Twitter, etc.), by classifying the Machine Learning method. Each algorithm method is evaluated using accuracy, precision, recall, and F1 score to determine the performance of the classification level

References

APJII, P. (2014). Asosiasi Penyelenggara Jasa Internet Indonesia. Jakarta: APJII.
Aprilia, R., Sriati, A., & Hendrawati, S. (2020). Tingkat Kecanduan Media Sosial pada Remaja. Journal of Nursing Care, 3(1), 41–53.
Candra, R. M., & Nanda Rozana, A. (2020). Klasifikasi Komentar Bullying pada Instagram Menggunakan Metode K-Nearest Neighbor. IT Journal Research and Development, 5(1), 45–52. https://doi.org/10.25299/itjrd.2020.vol5(1).4962
Cohen, R., Lam, D. Y., Agarwal, N., Cormier, M., Jagdev, J., Jin, T., Kukreti, M., Liu, J., Rahim, K., & Rawat, R. (2014). Using computer technology to address the problem of cyberbullying. Acm Sigcas Computers and Society, 44(2), 52–61.
Hasan, N. F. (2021). Deteksi Cyberbullying pada Facebook Menggunakan Algoritma K-Nearest Neighbor. Journal of Smart System, 1(1), 35–44. https://doi.org/10.36728/jss.v1i1.1605
Hutagalung, A. S., Negara, A. B. P., & Pratama, E. E. (2021). Aplikasi Pendeteksi Cyberbullying Terhadap Komentar Postingan Media Sosial Instagram dengan Metode Naïve Bayes Classifier Berbasis Website. JUSTIN (Jurnal Sistem Dan Teknologi Informasi), 9(3), 364–371. https://doi.org/10.26418/justin.v9i3.44843
James, B., & Yuono, D. (2020). Pusat Pencegahan Cyberbullying: Pencegahan Cyberbullying Melalui Karya Arsitektur. Jurnal Sains, Teknologi, Urban, Perancangan, Arsitektur (Stupa), 1(2), 1359. https://doi.org/10.24912/stupa.v1i2.4450
Maya, N. (2015). Fenomena Cyberbullying Di Kalangan Pelajar. JISIP: Jurnal Ilmu Sosial Dan Ilmu Politik, 4(3), undefined-450.
Muneer, A., & Fati, S. M. (2020). A comparative analysis of machine learning techniques for cyberbullying detection on twitter. Future Internet, 12(11), 1–21. https://doi.org/10.3390/fi12110187
N. Willard. (2011). Educator’s Guide to Cyberbullying and Cyberthreats. Center for Safe and Responsible.
Novalita, N., Herdiani, A., Lukmana, I., & Puspandari, D. (2019). Cyberbullying identification on twitter using random forest classifier. Journal of Physics: Conference Series, 1192(1). https://doi.org/10.1088/1742-6596/1192/1/012029
Novalita, Natasya, Herdiani, A., & Lukmana, I. (2019). Identifikasi Cyberbullying Pada Media Sosial Twitter Menggunakan Metode Klasifikasi Random Forest.
Okik Adishya Banu Wiryada, Nuke Martiarini, T. E. B. (2017). Gambaran Cyberbullying Pada Remaja Pengguna Jejaring Sosial di SMA Negeri 1 dan SMA Negeri 2 Ungaran. Intuisi Jurnal Psikologi Ilmiah, 9(1), 26–38.
Pandie, M. M., & Weismann, I. T. J. (2016). Pengaruh Cyberbullying Di Media Sosial Terhadap Perilaku Reaktif Sebagai Pelaku Maupun Sebagai Korban Cyberbullying Pada Siswa Kristen SMP Nasional Makassar. Jurnal Jaffray, 14(1), 43–62. https://doi.org/10.25278/jj.v14i1.188.43-62
Patchin & Hinduja. (2006). Bullies move beyond the schoolyard: a preliminary look at cyberbullying. Youth Violence Juv. Justice, 148–169. https://doi.org/10.1177/1541204006286288
Perwira, A., Dwitama, J., & Kunci, K. (2021). Deteksi Ujaran Kebencian Pada Twitter Bahasa Indonesia Menggunakan Machine Learning : Reviu Literatur. 1, 31–39.
Qilla Aulia Suri, A. M. G. (2019). Perancangan Sistem Perangkat Lunak Anti Cyberbullying Berbasis Agen Sebagai Solusi Pencegahan Dan Penanganan Dampak Negatif Penggunaan Teknologi Internet. Prosiding SNATIF Ke-6 Tahun 2019, 2007, 96–101.
Rahayu, F. S. (2012). CYBERBULLYING SEBAGAI DAMPAK NEGATIF PENGGUNAAN TEKNOLOGI INFORMASI. 43, 22–31.
Ramadhani, M. R., & Pratama, & A. R. (2020). Analisis Kesadaran Cyber Security Pada Pengguna Media Sosial Di Indonesia. Jurnal Aotomata, 3(2), 1–8.
Rifauddin, M. (2016). Fenomena Cyberbullying pada Remaja. Khizanah Al-Hikmah : Jurnal Ilmu Perpustakaan, Informasi, Dan Kearsipan, 4(1), 35–44. https://doi.org/10.24252/kah.v4i1a3
Sahrul, S., Rahman, A. F., Normansyah, M. D., & Irawan, A. (2019). Sistem Pendeteksi Kalimat Umpatan Di Media Sosial Dengan Model Neural Network. Computatio: Journal of Computer Science and Information Systems, 3(2), 108–115.
Setiawan, D. (2018). Dampak Perkembangan Teknologi Informasi dan Komunikasi Terhadap Budaya. JURNAL SIMBOLIKA: Research and Learning in Communication Study, 4(1), 62. https://doi.org/10.31289/simbollika.v4i1.1474
Syadza, N. (2017). Ditinjau Dari Konformitas Dan Kematangan Emosi. 12(1), 17–26.
Syah, R., & Hermawati, I. (2018). The Prevention Efforts on Cyberbullying Case for Indonesian Adolescent Social Media Users. Jurnal Penelitian Kesejahteraan Sosial, 17(2), 131–146.
Talpur, B. A., & O’Sullivan, D. (2020). Cyberbullying severity detection: A machine learning approach. PLoS ONE, 15(10 October), 1–19. https://doi.org/10.1371/journal.pone.0240924
Published
2022-06-27
How to Cite
Kustianti, A. A., Sianturi, R., Sarwani, A., Siswadi, A. P., Nurmalita, D., & Puspitasari, E. (2022). Teknologi Informasi Efektif Mendeteksi Cyberbullying. Journal of Bionursing, 4(2), 69-78. https://doi.org/10.20884/1.bion.2022.4.2.134